Mucin biosynthesis: upregulation of core 2 beta 1,6 N-acetylglucosaminyltransferase by retinoic acid and Th2 cytokines in a human airway epithelial cell line.
نویسندگان
چکیده
Vitamin A and the T helper 2 cytokines IL-4 and IL-13 play important roles in the induction of mucin gene expression and mucus hypersecretion. However, the effects of these agents on enzymes responsible for mucin glycosylation have received little attention. Here, we report the upregulation of core 2 beta1,6 N-acetylglucosaminyltransferase (C2GnT) activity both by all-trans retinoic acid (RA) and by IL-4 and IL-13 in the H292 airway epithelial cell line. Northern blotting analysis showed that the M isoform of C2GnT, which is expressed in mucus-secreting tissues and can form all mucin glycan beta1,6-branched structures, including core 2, core 4, and blood group I antigen, was upregulated by both RA and IL-4/13. The L isoform, which forms only the core 2 structure, was moderately upregulated by IL-4/13 but not by RA. Enhancement of the M isoform of C2GnT by RA was abolished by an inhibitor of RA receptor alpha, implicating RA receptor alpha in the effect of RA. Likewise, an inhibitor of the Janus kinase 3 pathway blocked the enhancing effects of IL-4/13 on the L and M isoforms of C2GnT, suggesting a role of this pathway in the upregulation of these two C2GnTs by these cytokines. Taken together, the results suggest that IL-4/13 T helper 2 cytokines and RA can alter the activity of enzymes that synthesize branching mucin carbohydrate structure in airway epithelial cells, potentially leading to altered mucin carbohydrate structure and properties.
منابع مشابه
The Effect of Retinoic Acid on Seminal Vesicle Epithelial Cell
Purpose: The seminal vesicles are androgen dependent exocrine glands producing protein-rich secretion. The retinoic acid has been implicated as a signaling molecule for the seminal vesicle development. In the present study, the effect of retinoic acid on seminal vesicle epithelial cell of neonatal mouse was investigated. Materials and Methods: Newborn male N-MRI mice were injected intraperiton...
متن کاملMucin gene expression during differentiation of human airway epithelia in vitro. Muc4 and muc5b are strongly induced.
Mucus hypersecretion is characteristic of chronic airway diseases. However, regulatory mechanisms are poorly understood. Human airway epithelial cells grown on permeable supports at the air-liquid interface (ALI) develop a mucociliary morphology resembling that found in vivo. Such cultures provide a model for studying secretory cell lineage, differentiation, and function, and may provide insigh...
متن کاملAllergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells.
A hallmark of asthma is mucin overproduction, a condition that contributes to airway obstruction. The events responsible for mucin overproduction are not known but are thought to be associated with mediators of chronic inflammation. Others have shown that T-helper 2 (Th2) lymphocytes are required for mucous cell metaplasia, which then leads to mucin overproduction in animal models of allergy. W...
متن کاملاثر درمانی آل-ترانس رتینوییک اسید در آنسفالومیلیت تجربی خود ایمن و نقش آن در پاسخهای لنفوسیتهای T کمکی
Background: Recent studies have demonstrated an essential role for IL-17 in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Furthermore, it has been shown that FoxP3+Treg cells play an important role in the suppression of autoinflammatory reactions. Although, previous studies have determined the immunomodulatory potentials of all-trans-retinoic acid (ATRA), but these immuno...
متن کاملIL-4 differentially regulates eotaxin and MCP-4 in lung epithelium and circulating mononuclear cells.
To investigate the mechanisms of eosinophil recruitment in allergic airway inflammation, we examined the effects of interleukin (IL)-4, a Th2-type cytokine, on eotaxin and monocyte chemoattractant protein-4 (MCP-4) expression in human peripheral blood mononuclear cells (PBMCs; n = 10), in human lower airway mononuclear cells (n = 5), in the human lung epithelial cell lines A549 and BEAS-2B, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 288 1 شماره
صفحات -
تاریخ انتشار 2005